
On the KdV-type equation with variable coefficients

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 5673

(http://iopscience.iop.org/0305-4470/28/19/020)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 00:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A Math. Gen. 28 (1995) 5673-5684. Printed in the UK 
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People’s Republic of China 
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Abstract. In h i s  paper, the mv-type equations with variable coefficients appearing in a lot 
of the literanue are discussed generally. The explicit transformations which transform various 
Kdv, mKdv and KPtrpe nonlinear evolution equations into their ‘canonid forms with constant 
coefficients are given. The results presented here tie up many of the investigations scattered in 
the literature. 

1. Introduction 

In the last decade there has been intense activity regarding the study of the complete 
integrability and symmetries of nonlinear partial differential equations (PDEs). But the main 
domain of activity was generally restricted to equations with constant coefficients. Recently, 
nonlinear PDEs with variable coefficients have been discussed by various authors. If one 
searches a variety of literature, one really is surprised how much work has been invested in 
the study of the Kdv-typeequations with variablecoefficients which originated, f ~ o m  shallow 
water problems in water with variable depth and inhomogeneous properties of media. It has 
been shown that x ,  t-dependent KdV-type equations play an important role in applications. 
In this paper, KdV-type equations with variable coefficients which appear in a lot of the 
literature are discussed generally. The explicit transformations which transform various 
KdV-, mKdV- and m-type nonlinea evolution equations into their ‘canonical‘ forms with 
constant coefficients are given. The results presented here tie up many of the investigations 
scattered in the literature. 

2. Ransformations from the general Kdv-type equations with variable coefficients to 
Kdv-type equations 

We consider the general KdV-type equations with variable coefficients 

Several equations of physical interest are covered by equation (1) (see below for examples). 
Let transformations 

ut f3(t)ux.r.x + 6fz@)upux + fo(t)u + fi(t)xu.z + s(t)u.z p > 0. (1) 

u(x,t)=c2g(t)V(C,5) f = x h ( t ) + l ( t )  5 =In@) (2) 
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then equation (1) ( p  = 1) reads as the KdV. So, equation (1) is an essentially constant 
coefficient KdV-type. The KdV-type equations with variable coefficients appearing in a lot 
of the literature are special cases of equation (1). Let us consider several examples. 

Example 1. Equation (5) admits the solitary wave solution 
1 p = l  

V(<,  t) = A sech2IP kq + BSpl q = 5 - cz $1 = (9) 

where 

We thus get the solitary wave solution to equation (1) 

u ( x ,  t )  = cocz exp ( Sr fo(t) dt) [ A  sechZIP [k(clx exp ( Sr fi ( t )  dr) 

+ci s’ s( t )  exp (s’ fi df) - cc: Jr f3 exp (3 /‘ f i  dt) dt)] + 86,i) 
(11) 

when f i ( t )  satisfies equation (4). Equation (1) ( p  = 1) also admits the solution, 

d x ,  t )  = @(t)  + c ~ ( P ( ~ ) x  + czcoexp ( [ ‘ ( 6 ~ 3 f z p  + fddt)  

where @(t) ,  rp(t). h( t ) ,  l ( t )  and m(r) are presented by equations ( ~ Q - c ) ,  if fi(t) satisfies 
equation (8). 

x(2k2sechz{k[xh(t) + l ( t )  + (4k2 + 6 B ) m ( t ) l ]  + B )  (12) 
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Example 2. Evidently, equation 

is a special case of equation (1). Equation (13) is transformed into equation (5) through the 
transformation 

U = c2coo(t)-'V c ~ x u ( ~ ) - '  + c: -dt, c:T(t) . (14) ( r ::; ) 
Let p = 1 and s(f) = 0, equation (13) reads as the equation derived by Fuchssteiner 111. 
Pseudopotentials, Lax pairs, Backlund transformation (BT), infinite conservation laws ( I ) ,  
symmetry and Lie algebra for the following equation 

(15) 
are obtained (see L2-41). Evidently, equation (15) is also a special case of equation (l), 
equation (15) reduces to the KdV by means of the following transformation 

~r = b(t)(uxxz + 6 ~ u . z )  + [F(t)x  + G(t)lux + 2F(t)u 

u ( x , t )  =exp ( 2 1 r F ( t ) d t ) Y ( x e x p ( S t F ( t ) d t )  

+ r C ( t ) e x p  ( S r F ( t ) d r ) d t , r b ( t ) e x p ( 3 S t F ( t ) d t ) d t ) .  (16) 

Example 3. Equation (1) contains 

an equation introduced by Fuchssteiner (see [l]). Notice that 

so equation (17) is transformed into the KdV through the transformation 
u(x,  t )  = o(t) - 'v(xu(t ) - ' ,  T( t ) ) .  (20) 

It should be remarked that equations (3.71) and (3.72) of [I] contain some errors, should 
be modified to equations (17), (18) and (20) above. 

Example 4. Lax pairs, BT and the Painlevd property (PP) of variable coefficient KdV 

uI + ort"uu, + fltmuxxx = 0 m = n or m = 2rz + 1 (21) 
are obtained by Nirmale eta1 [SI. Equation (21) is also covered by equation (1). Evidently, 
if m = n, then equation (21) is reduced to the KdV. If m # n,  perform the following 
transformations 

wp = constants 

< = xh( t )  r = m(t)  = - fltmh3(r) dt (2%) I' 
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where 

q ( r )  h(t)  = exp (- /6c&'tmpdt) (22c) 
m - n  

t 
p'(t) = -6c1Stm9'(t) - - 

Choose c1 = (n + 1)/68, then ( ~ ( t )  = ~ g ( t )  = l/tm+', h(t) = l/t"+'. So, if m = 2n + 1, 
then equation (21) reduces to the KdV, through transformation 

Exumple 5. The equation 

(24) 
ff B Y  u1 = -(uzXx + ~ u u , )  + -U + -xux a, 8. y =constants 
t t t  

is a special case of equation (1). We find that equation (24) can be reduced to the KdV if 
y = 28, by means of the transformation 

If 01 = 1, 8 = -4, we obtain equations (3.79) and (3.80) of [ l ] .  

Example 6. It is demonstrated that the KdV equation with non-uniformities 

U, + a(t)u + [b(t, x)uL  + c(t)uu, +d(t)u, + e(x, t )  = 0 (26) 
has the PP, BT and Lax pairs if the coefficients satisfy the compatibility condition 

b, + (a - Lc)b + bb, +d(t)b,,, = 2ah + hL- + - +ce 
d ( t )  dh 
cz dt 

where L = (d/dt)ln, and h(t) is an arbitraq and sufficiently smooth function of t [6]. 
Evidently, the KdV equation for non-uniform media with relaxation effects [71 

~ r = constant (28) uz + ru + [(co + ru)ulx + 6uu, + uxxx = 0 
the cylindrical KdV equation [8] 

(29) 
U + - + ~ u u ,  +U,, = 0 2t 

and the equation with non-uniform terms [91 

ur + ru + 6uu, + U- = 4r.x r = constant (30) 
are special cases of equation (26). Let transformation u(x, t )  = ( l /c ( t ) ) [6d( t )w(x ,  t )  - 
b(x,  t ) ] ,  by using the compatibility condition (27), equation (26) is reduced to the equation 

wz = -d(0(6wwx + ~ x n )  - 6d( t ) f ( t )w  + xIf'(t) + 12d(t) fz( t ) l  + F ( t )  (31) 

where 

F ( t )  = - 2ah + hL- + - ( c2 dt 66 
a + L(d/c)  

f(t) = 6d 
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The PP, Lax pairs,'BT, symmetries, Lie algebra and soliton-like solution for equation (31) 
ace discussed by Lou Sen-yue [IO], Tian Chou [Ill, and Zhu Zuo-nong .[12]. Putting 
w(x ,  t )  = U ( x ,  t )  + f ( t ) x  + f o ( t ) ,  $en equation (31) becomes 

(33) UI = - d C ) W &  + Uxxd - W t ) f ( t ) ( x U ,  + 2U) + 6fo(t )& 
with 

f o ( t )  = exp (- 1' 12d( t ) f ( t )  dt) [ lf F(t)exp (121' d ( t )  f(t) dt) + CO] 
(34) 

CO = constant. 
Equation (33) coincides with equation (1) ( p  = 1). So equation (26) is reduced to the KdV 
by using the transformation 

6d(t) j o ( t )  - b(x ,  t )  + 
+ - W t )  exp ( - 2 [ (a  + L:) dt 1 

c ( t )  

xV(xexp[ -jf (a+L:)  dt] 

+6/'f0exp[ -r (a+L:) dt]dt. 

- j ' d ( t ) exp[  - 3 / ' ( a + L : )  dtldt). 

Example 7. Dai and Jeffrey [13] investigated the following equations 

(3.5) 

where bo@, t )  satisfies the equation 

and 

bl, (p  = constant). (40) 
3a3(t) b: + 3a3(r) 

48 
U l ( X ,  t )  = - 

gPz 
The inverse scattering transformations for equations (36) and (38) are cons&ucted. 
Equations (36) and (38) cannot be transformed into the KdV in the view of Dai and Jeffrey. 
However, we find that such a transformation exists. Let 
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Substituting (41) into (36) and from (37) we obtain 

From equations (39) and (40), we find that A ( x ,  t )  = 0. Therefore, equations (36) and (38) 
are essentially the KdV. The equations introduced by Grimshaw [14], Joshi [15], Hlavaty 
[16], Baby [I71 and Lie Yi-shen and Baby [Is] are also special cases of equation (I). 

3. 'Bansformation from the general m Rdv with variable coefficients to the m Kdv 

We consider the general m KdV equation 

ut = f3(t)uxXx + (c1fZ(t)uP + cze(t)uP+' + c ~ s ( ~ ) u P - ~ ) u ~  + fo(t)u + f i ( t ) x u ,  

with p = 1 and 2, and CI, CZ, c3 constants. 
Let transformations 

u(x ,  t )  = g(t)V(<, t) t = xk( t )  i- I ( t )  t = m(t)  
with 

l ( t )  = ~ 3 6 ~ ~ ~ ( r ) h ( t ) d t  m(t) = f3(t)h3(t)df. S' S* 
If the following equations hold 

f3(t)h2(t)  = fz(t)g(t) = e( t )g2( t )  
f3(t)h2(t) = e ( t )g2@)  
h(r)h2(t)  = f z ( t ) g Z ( t )  = e(t)g3(t) = s( f )g( f )  

then equation (46) is transformed into 

when p = 1, CICZ # 0 
when p = 1. CI = 0 
when p = 2, C I C Z C ~  # 0 

v, = v,,, + CI vv, + czvzv, 
V, = Vttr +clVzV, +c2V3V, + q V V <  

when p = 1 
when p =2. 

Furthermore, when cz # 0, let V --+ V - cl/2c2, 5 + 5 - (C:/~CZ)S, t + t, then the 
Gardnere equation (50) reads as the m Kdv equation 

When C I C Z C ~  # 0 and c3 = c:/3cz, let V + V - clj3c2, < + 5 + c;/27c:, z + T. then 
equation (51) becomes 

(53) 

v, = V,<, + CZVZV{. 

v, = V<<< + c2v3v,. 

(52) 
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Evidently, the equation 

introduced by Fuchssteiner [l] is a special case of equation (46). By using the @ansformation 

equation (54) is reduced to equation (52). Pseudopotentials, Law pairs, BT, ICL, symmetries 
and Lie algebra for 

(56) 
have been given [2,3,19]. Evidently, equation (56) can also be reduced to the m Kdv, 
equation (52). 

qt = ~ X X X  - 6q2qx + ( F ( t ) x  + G(t))qx + 

4. Transformation from the general KP equation to the KP equation 

The general KP equations with variable coefficients are discussed by many authors, for 
example, David er al  [20,21] discussed a general KP equation with y and t dependence. 
The Lax pair, BT, solitary wave solution and ICL for the general KP equation 

UI = b(tI(6uux + ~ x x x )  + kl( t )@ux + 2 ~ )  + s~(t)u.x + [kz(t)y +sz(t)luy + 6b(r ) f ( t )u  
+ ~ ( f ' ( t )  - 3ki(t)f(r) - 12b(t)f2(t)) + F ( t )  + 3b(t)gz(t)D;'uyy (57) 

with g(t) = expJ(Zk1 ( t )  -k&) + 12b(f)f(t)) df have been given by the author [22]. W~th 
kz = sz = f = F = 0, equation (57) reduces to the equation investigated by Gu Zhu-quan 
[23]. With b = -1, ki = st = 0, F ( r )  = 0, equation (57) reduces to the equation discussed 
by Tian Chou [%I. Furthermore, let f ( t )  = 1/12, g ( t )  = u/ t ,  equation (57) reduces to 
the Johnson equation, which was discussed for its applications in water of variable depth 
[25-27]. Painlev6 analyses for special cases of equation (57) are also given [28,291. 

ut = f3(t)+rx + 6fz(t)uu, + fo(r)u + f i ( t ) x u x  + si(t)u, + [ k z ( t ) ~  + sz.(t)luy 
(58) 

Let U -+ U + W), and @(r) = [.ff U t )  exp(- .f' Mt) dt) +CO] exp(.f' fo(t) at), then (58) 
becomes 

Let us now discuss the following general KP equation 

+xk3@) + F ( t )  + 3f4(t)D;'uYy. 

uI = f3(r)uxxz + 6 f z ( t ) ~ ~ ~  + f X 0 u  + fl(@wz + h(t) + 6fdt )W)lu ,  
+[kz(r)y + ~ z ( t ) l ~ y  + ~ k 3 ( t )  + 3 f d t ) D ; l ~ ~ ~ .  (59) 

Let transformations 

U@. 0 = x d t )  + gO)V(t, V , 5 )  (604 

t = ~ ~ ( t ) x + W )  v = P z ( ~ ) Y + ~ O )  i= / ' fdOp:( f )d t  @Ob) 

~'(0 = 6 f z ( t ) ~ ~ ( r )  + + fi(t))v(f) + k3(r)  
r PI 1 

r PI 1 



where k, b and B are arbitrary constants, A and c are given by (IO), h(t), l(t) and m(t) are 
given by (65), if equation (66) holds. 

5. High-order variable coefficients KdV equation 

We discuss the high-order variable coefficients KdV equation 

c; =constant. 
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where p(t) = l/(@ + CI ff fi(t)~dt), g(t )  = h ( f )  = cop@), r(t) = s,' fzx+1(t)hzN+'(f)dt 
with ao, co, CI arbitrary constants. If 

fi(t) = f3(t)h(t) fx+~(t) fz+30)h2(t) (k = 1,2,3, . . . , N - 1) (71) 
then equation (69) is reduced to the high-order KdV equation 

Let us consider the travelling wave solution for equation (72), V ( c ,  r )  = W(q) ,  
q = k< - wr, where k and.o are constants to be determined. Then equation (72) reads 

Integrating equation (731, we get 
N 

-OW + i c l k W 2  + xc21+lk2f+'W(2f) = K 
f=1 

(74) 

where K is an integration constant. Further, we assume that the travelling wave solutions 
to equation (72) are of the particular form 

(75) W ( q )  = Aosech2N q + BO. 
Notice that 

(sechZN q)c2) = -2N(2N + l)sechZN+' q + (2N)'sechZN q 
= b2.1 sechZN+' q + (2N)' sechZN q A (76.0) 

(sechZN q)(4)  = 2N(2N + 1)(2N + 2)(2N + 3) q 
-2N(2N + 1)[(2N + 2)' + (2N)21sech2N+2 q + (2N)4sech2N q 

(76.1) = A b4.2 s e ~ h ~ ' ~  q + b4,1 sechmf2 q + (ZN)4 sechZN q 

(sechZN U)@' b6.3 sech2N+6 q + b6.2 ~ e c h ' ~ ' ~  q + bs,l sechm+' q + (2N)6 sechZN q (76.2) 

(sechZN q)bN)  (-1)N2N(2N + 1)(2N + 2). . . (4N - 1 )  sech4N q 
4N-2 +bZ~,n-l sech rl f b2nr.s-2 S e ~ h ~ ~ - ~  17 +. . . 

+b2~,1 sechZN+' q + (2N)2N sechZN q. (76.N) 

Substituting equations (75) and (76) into equation (74), we get the following equations: 

sechZN q : o = clkBo + (2N)'c3k3 + (2N)4~5k5 + 
sechZN+' q : b2,1c3 + b4,1c~k'+ b6,lc7k4 + ... + bZN,lcZN+lk 

+ ( 2 N ) 2 N ~ ~ ~ + ~ k " + 1  (77.0) 

(77.1) 2N-2 - - 0 
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sechZNt4 q : b4,zcs + bs,zc7k2 + . . . + ~ Z N , Z C Z N + I ~ ~ ~ - ~  = 0 (77.2) 

s e ~ h ~ ~ - ' q  : bw-z,N-iC2N-ikZN-' + b & y , ~ - i C z ~ + i k ~ ~ ~ '  = 0 (77.N - 1) 

~ e c h ~ ~  q : A0 = (77.N) 

From equation (71.N - I ) ,  assuming CZN-ICZN+I < 0 and noticing that ~ ~ - z , N - I ~ z N . N - ~  > 
0, we get 

(-1)N" 
( 4N) (2N 4- 1)(2N + 2 ) .  . . (4N - l)CzN+ikZN. 

c1 

2 - -bZN-Z.N-lCZN-i ~. > o. k -  
~ Z N . N - I  CZN+I 

From equations (77.N - 2)-(77.1), we obtain 

where d, are dependent on N .  

the solitary wave solution 
So, if CZN-IC2N+l < 0, c3,  cs, . . . , c ~ ~ + ~  satisfy equation (79), then equation (72) admits 

V ( c ,  t) = AosechZN(k$ -or) + BO (80) 

where Bo is an arbitrary constant and,Ao, o and k are given by equations (77.N), (77.0) 
and (78). We thus get the solution for equation (69) 

X CO 
u ( x .  t )  = + 

ao + ci J,' fi(t) dt n~ + CI J,' fi(0 dt 

6. Discussion 

In the previous sections, a class of explicit transformations between various variable 
coefficient equations of KdV, mKdV and KP type to their (integrable) constant coefficient 
counterparts are revealed. Therefore, integrability and symmetry results, for instance, 
PP, BT, Lax pairs, solitary wave SohJtions, ICL, symmetry, Lie algebra etc for variable 
coefficients KdV, mKdV and KP-type equations are simple, transparent and straightforward. 
So, it is very important and interesting to find new and real KdV-type equations with variable 
coefficients, and to investigate integrability and symmetries for those equations. Of course, 
a few equations with variable coefficients which cannot be reduced to the standard forms 
have been introduced: see, for instance, the KP equation with explicit x and t dependence 
introduced by Steeb and Spieker (see equation (17a) in [30]), the general KP equation with 
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explicit x, y and t dependence and the general x, t-dependent KdV-Burgers-type equation 
studied by Zhu zuo-nong (see equations (26) and (32) in [31]), the equation 

(82) 
discussed by Fuchssteiner (see equation (3.74) in [I]), and the model based on the forced 
KdV equation 

(83) ut - &U, + uxxx = A sin[& - ut)].  

This equation has recently been analysed by Malomed [32] and Grimshaw et al [33]. 
Winternitz and Gazeau [34,35] studied the symmetry for 

ut + f (z, t)uu, + g(x,  t)u,, = 0. (84) 

It appears to the author that no simple transformation exists which transforms equations (82) 
or (84) into a constant coefficient equation. However, if T(r )  satisfies 

(85) 
U + U i- xjdvwT,T, then equation (82) is reduced to the KdV. If f, = g, = 0, 
g ( t )  = f (t)[q l,' f ( s )  dr + CZ], then equation (84) is also reduced to the Kdv. 
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