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On the kav-type equation with variable coefficients
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Department of Basic Science Agricultural College, Yang Zhou University, Yang Zhou 225001,
People’s Republic of China

Received 5 December 1994, in final form 21 April 1995

Abstract. In this paper, the Kdv-type equations with variable coefficients appearing in a lot
of the literamre are discussed generatty, The explicit transformations which transform various
Kdv, rKdv and KP-type nonlinear evolution equations into their ‘canonical’ forms with constant
coefficients are given. The results presented here tie up many of the investigations scattered in
the literature.

1. Introduction

In the last decade there has been intense activity regarding the study of the complete
integrability and symmetries of nonlinear partial differential equations (PDEs). But the main
domain of activity was generally restricted to equations with constant coefficients. Recently,
nonlinear PDEs with variable coefficients have been discussed by various authors. If one
searches a variety of literature, one really is surprised how much work has been invested in
the study of the Kdv-type equations with variable coefficients which originated, from shallow
water problems in water with variable depth and inhomogeneous properties of media. It has
been shown that x, ¢-dependent Kdv-type equations play an important role in applications.
In this paper, Kdv-type equations with variable coefficients which appear in a lot of the
literature are discussed generally. The explicit transformations which transform various
Kdv-, mKdv- and KP-type nonlinear evolution equations into their ‘canonical’ forms with
constant coefficients are given. The results presented here tie up many of the investigations
scattered in the literature.

2. Transformations from the general Xdav-type equat:ons Wlth variable coefficients to
Kdv-type equations
We consider the general KdV-type equations with variable coefficients

= fsxxx + 6 /O Ux + HoOu+ filt)xuz +s@ue  p>0. (1)

Several equations of physical interest are covered by equation (1) (see below for examples).
Let transformations

u(x, 1) =cgOV{, t) { =xh(t) +1() T =m(t) 2

! !
g(t) = coexp ([ Jo(®) dt) h(t) = crexp (f A di‘) (3a)

t t
ity = f s()h()dt m(t) = f HOR ) dr (35)

where
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¢o, €1 and ¢z are arbitrary constants. If coefficients f;(¢) satisfy the equation

HOR®) = 2 fo(D)g? @) 4
then equation (1) is transferred into a Kdv-type equation
Vr = V;;; + GVPV;-. (5)

If p =1, coefficients f;(¢} do not satisfy equation (4), then let transformation
u(x: t) = W(I) + c3gp(t)x + ngff)vffr T), (D(r) # 0

& =xh()+I(2) T = m(t) ©
where

W' (1) = (6cs 2D () + fol)Y (2} + cas(t)e(r)

H

o) = [ SO+ 6 AU ERE) & (7a)

@' (£) = 6c3 fo(P™(2) + (fol®) + F(Np(D)

5= oo [ Geafatio) + 7)) 7h)

4
h(t) =cyexp ( f (6c3 L2(Dp@) + f1(2) df)
3

n) = [ oo o)
¢ps €1, ¢ and ¢y are arbitrary constants. If coefficients f;(#) satisfy the equation

HORE) = f2(De®) ®

then equation (1) (p = 1) reads as the Kdv. So, equation (1) i3 an essentially constant
coefficient Kdv-type. The Kdv-type equations with variable coefficients appearing in a lot
of the literature are special cases of equation (1). Let us consider several examples.

Example 1. Egvation {5) admits the solitary wave solution

1 p=1
Vg, ©) = AseckPkn+ BS  g=f—cT 6”1={0 p#1 ®
where
AP 4k*
A ((p + 1;(;; 2 ) ¢= -y = 6Bl (10)

We thus get the solitary wave solution to equation (1)

w(x, £} = coca exp(ft FH® dt) {A sech?? l:k(clx exp (ft [ dt)
4+ fts(t)cxp ([I h dr) _cc? ft Jaexp (3 fr f dr) dz)] + BSPI}

(11)
when f(¢) satisfies equation (4). Equation (1) (p = 1) also admits the solution,

u(x, ) = ¥ () + cap(t)x + caco exp (f (6cs fap + fo) df)

x (22 sech®{k[xh () + I(t) + (4k* + 6BYm ()]} + B) (12)
where ¥ (2), @(2), k(t), I{t) and m(r) are presented by equations (7a—c), if f;(z) satisfies
equation (8).
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Example 2. Evidently, equation
e (2) v (2)

#y = VYT (Diterz + V(D0 ()P T(Ou  u, — ) i — m\mxux + (e, ; )
= 9r@ ,
(1) = &

is a special case of equation (1). Equation (13) is transformed into equation (5) through the
transformation

¥
U = cacow () V(clxv(t)"I +c f -‘;E—g-dr, c3T(t)). (14)

Let p =1 and s(#) = 0, equation (13) reads as the equation derived by Fuchssteiner [1].
Pseudopotentials, Lax pairs, Backlund transformation (BT), infinite conservdtion laws (ICL),
symmetry and Lie algebra for the following equation

ty = b(t)(uxxx + busty) + [F()x + G(O)]uy + 2F (t)u (15)

are obtained (see [2-4]). Evidently, equation (15} is also a special case of equation (1),
equation (15) reduces to the Kdv by means of the following transformation

u(x, t} =exp (th F{) dt) V(x exp (‘[: F{) dt)
+ ft G(t)exp (fr F(t) dt) dz, fr b(t) exp (3 f! F() dt) dr). (16)

Example 3. Equation (1) contains

b
b = TV s+ 60OV O T O = ) 50— Y20 (17)
where
- ’ a(s) B v b(s)
w(t) =exp { f Ys(s}n [a(T(s))] ds) V() =exp {/ Ys(s) In [b(T(s)):l ds}
' : (18)
an equation introduced by Fuchssteiner (see [1]). Notice that
@ a(t) Ve b(r)
L= ¥:(#) In 2T @) = Y (f) In b (19)
so equation (17) is transformed into the Kdv through the transformation
u(x, ) = 0@~V @)™, T@). (20)

It should be remarked that equations (3.71) and (3.72) of {1] contain some errors, shouid
be modified to equations (17), (18) and (20) above.

- Example 4. Lax pairs, BT and the Painlevé property (PP} of variable coefficient Kdv
uy Fat"u, + Bt Uy =0 m=norm=2n+1 @ = constants 21)
are obtained by Nirmale et al [5]. Equation (21) is also covered by equation (1). Evidently,

if m = n, then equation (21) is reduced to the Kdv. If m 3# n, perform the following
transformations

m=-n

6
w= L o)+ gV, ) (220)

& = xa() T=mlt) = —f Bt™h3(r)dt (22h) 7
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where
@'(t) = —6e1 Bt (t) — 2220 h(t) =exp ( - f 6c1Bt"¢ dr) (22c)
g() = exp [ - f (ﬁclﬁt"‘;a + T—-:—”) dr:[. 22d)

Choose ¢1 = (n + 1)/68, then ¢(t) =-g(2) = 1/:™*!, h(t) = 1/r"*). So,if m =2n+ 1,
then equation (21) reduces to the Kdv, through transformation

_(n+Dx 63 x B
ule ) = = T gen Ve L Do @)
Example 5. The equation
o 4
U= ?(unx + 6uu, ) + T + T o, B, v = constants (24)

is a special case of equation (1). We find that equation (24} can be reduced to the Kav if
v = 2/, by means of the transformation

- B -28 5 ¥ _3g .
wix,t) = 20!}: + 7PV [ xt7F, 3,8t . (25)
fa=1 8= , we obtain equations (3.79) and (3.80) of [1].

Example 6, It is demonstrated that the KdV equation with non-uniformities

u, -+ a(®u + [bt, xyu)y + ey + AWtz +e(x, ) =0 (26)
has the PP, BT and Lax pairs if the coefficients satisfy the compatibility condition
d t
d? d d_d
o (Za +aL22 (’) + S+ L (r)de(;) + E?L"%)) @)

where L = (d/df)In, and h(t) is an arbitrary and sufficiently smooth function of ¢ [6].
Evidently, the Kdv equation for non-uniform media with relaxation effects [7]

u, +ru+[(co+ruduly + 6uny + Uy =0 r = constant (28)
the cylindrical Kdv equation [8]

u

 + % + Gy Lty = 0 (29}
and the equation with non-uniform terms [9]

Uy~ rit 4 Oulty + yyy = %rzx ¥ = constant (30)

are special cases of equation (26). Let transformation w«(x, ) = (I/c@)6d(t)wix,t) —
b{x,t)], by using the compatibility condition (27), equation (26) is reduced to the equation

Wy = —d(D)(6wwy + Wixx) — 64() f(Ow + x[f'() + 124() F2)] + F2) (31)
where
L h
J"()—ﬂ-'-a(,d—-/cl F(t)-.—-(Qak-I-hL—+%?). {32)
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The pp, Lax pairs, BT, symmetzies, Lie algebra and soliton-like solution for equation (31)
are discussed by Lou Sen-yue [10], Tian Chou [11], and Zhu Zuo-nong [12]. Putting
wix, ) =Ulx, 1)+ f(t)x + fo(r), then equation (31) becomes

Uy = —d($)(6U Uy -+ Upx) — 6d (@) f () (xUr + 2U) + 6 /(1) U, (33)
with
S ! !
fot) =exp (— f 124y f{1) dt)[f F(t)exp (12f d(t) f (1) dt) + cn] 34)
.¢p = constant.

Equation (33} coincides with equation (1) (p = 1). So equation (26} is reduced to the KdV
by using the transformation

[fwt(r)fo(r) b(x, 1) + (a + Lf_-) x]
6d(t) ! d
-+ ) cxp(—?.f (zz—!—L;) dt]
¢ d
xV(xexp[—f (a-!—LE) dt]
H !

+6f foexp[—f (a—{—L%) dr] dr,

——ftd(z)exp[—3ft (a+L5) dt:l dt). ' (35)
c

Example 7. Dai and Jeffrey [13] investigated the following equations

u(x,t) =

1
c(t)

by
(et — Bas(Dutty + Lay(Eitens + [%BE ; o, ) + %é{ﬂx - %Az(z)x] e
3as(t) o (t)ba(2) _
+ [252(1') box + 0 — Ag(t)] u=0 , {36)

where bglx, ¢) satisfies the equation

(b + 22 b+ s b + [‘;ﬁ)”;gz) - %Am] xbyy — Aa®OBo =0  (37)
and

a(th, — Sas()nuy + 3a3(Dttrex — a1(x, DUy — ai (¥, Hu =0 (38)
with ) '

w€(@)by, — 3;;(2’)1:% L0 (bpene =0 39
and

ai(x, t) = 3a5(t) b2 + 3as (1) b1 {f = constant). (4

8p2 L 48
The inverse scattering transformations for equations (36) and (38) are constructed.
Equations (36) and (38) cannot be transformed into the Kav in the view of Dai and Jeffrey.
However, we find that such a transformation exists. Let

bo(x, 1«‘)

b2(2) “0

u(x, ) =v(x, i)+ ——r
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Substituting (41) into (36) and from (37) we obtain

w6y — 3as()vvs + Las (e + [%%z(—f)l - %Az(f):l v + [ “;’;g) _ Az(!):, y=0.
(42)
Let
2

u(x, ty=v(x, 1 — mﬂi(x, b)) 43)
Substituting (43) into (38), we get

(v — a3 (EIvx + a3 (EWias + Ax, 1) = 0 (44)
where

_ 2a3 (@) _ 2ay;(x, 1) 2 _ Oiexe

A(x, 1) = a(l) [—_—_Sa%(t) ay(x, ) 300 ] 2@ 1815 6 (45)

From equations (39) and (40), we find that A(x, ) = 0. Therefore, equations (36) and (38)
are essentially the Kdv. The equations introduced by Grimshaw [14], Joshi [15], Hlavaty
[16], Baby [17] and Lie Yi-shen and Baby [18] are also special cases of equation (I).

3. Transformation from the general m Kdv with variable coefficients to the m Kdv

We consider the general m Kdv equation
U = fy(@ttazs + (€1 Hr(OUF + c2e(O)u?* + c3s (P Ny + fou + fi(E)xuy (46)

with p = 1 and 2, and ¢, ¢, ¢3 constants.
Let transformations

ulx,t) =g)V{,©)  §=xh(t) +I(@) T = m(z) “7)

with
2 +

£(t) = coexp ( [ 50 dr) hoy=ciesp [ fierer (43a)

() = f c38,15(0R(2) dt m(t) = f F(OF () dr. (485)
If the following equations hold
HORE = (D) = e()g* () when p =1, c1c # 0 (49a)
F(ORA() = e()g* () when p=1,¢1 =0 (49b)
HORPE) = LD = e () =s(g() when p =2, creocs # 0 (49¢)
then equation (46) is transformed into

V=V +aVV + VY when p =1 (50)

Vi = Ve +a VIV + V3V + VY when p = 2. (51

Furthermore, when ¢; # 0, let V = V —¢1/2¢, { = ¢ — (c}/4c)T, T = 7, then the
Gardnere equation (50) reads as the m KdV equation

Ve = Ver + ViV (52)

When ¢jcoc3 7= 0 and ¢3 = c%/Scz, let V-V —c /3¢, =&+ cfl‘/?.'?c%, T —+ 7, then
equation (51) becomes

V—; = Vg;; + C2V3V;. (53)
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Evidently, the equation

#r = VAP L(Meas + v (O@ O Ttz + 60O T (O ux + esv(O (s
@ (f) _u )
a)(t) v{t)

introduced by Fuchssteiner [1] is a special case of equation {46). By using the transformation

€1, €2, €3 = constants (54)

u(x, ) = w(t)” 1V(xu-‘(z)+ o ‘T(z) T(t)) (55)

equation (54} is reduced to equation (52). Pseudopotentials, Lax pairs, BT, ICL, symimetries
and Lie algebra for
@ = guxx ~ 6g°gx + (F(O)x + G(Ngx + F(t)g (56)

have been given [2,3,19]. Evidently, equation (56) can also be reduced to the m Kdv,
equation (52).

4, Transformation from the general XP equation to the Kp equation

The general KP equations with variable coefficients are discussed by many authoss, for
example, David ef al [20,21] discussed a general KP equation with y and ¢ dependence.
The Lax pair, BT, solitary wave solution and ICL for the general KP equation

up = b2} (6usty + txyx) + ki () (x1tg + 20) + 51(Dx + [k 2}y + 52(2)]uy + 65(2) f (t)u
+x (1) = 3@ f @) — 126 @) + F() +36()g* DMy (5T)
with g(#) = exp [ (2 (£} — k() + 12b(z) £ (2)) dt have been given by the author [22]. With
ky = 53 = f = F =0, equation (57) reduces to the equation investigated by Gu Zhu-quan
[23]. With b = —1, k; = 5; = 0, F(t) = 0, equation (57) reduces to the equation discussed
by Tian Chou [24]. Furthermore, let f(r) = 1/12¢, g{¢) = «/t, equation (57) reduces to
the Johnson equation, which was discussed for its applications in water of variable depth
[25-27]. Painlevé analyses for special cases of equation (57} are also given [28, 29].
Let us now discuss the following general KP equation
g = f3(Ouxex + 6 f2(Duny + fo(du + fr(O)xus + s1(ux + [ka)y + 52(8)]uy
+xk3(t) + F(t) + 3 fa() D uyyy. (58)
Let u —> -+ (1), and $(1) = [f* F@exp(— [ fot) d6) + col exp(f* folt) dr), then (58)
becomes

= fa(Duxxx + 6 fo()uny + folt)u + fi(t)xux +[51(2) + 6 f2() 3 (2)]ux

k2 (2)y + 52000 ]ty -+ xk3 (1) + 3 2 (0) D . (39)
Let transformations
u(x, ) =xpt) + gOV{,n, 1) u (60a)
{=p1x + 1) n = pa(t)y +m(2) T= f t FHOYHOYY (60b)
¢'(2) = 6 2(t)p* (1) + (folt) + A)P(E) + ks (1)
&(r) = exp [ f t(ﬁfz(t)qo(t) + fo(th) dt] (60c)

1) = exp [ f 60 + 1) dr]
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H
I(t) = [ 1O p1(2) + 6 fa ) (8) pr(2)) de (60d)
pat) = exp ( f kz(t)dr) m(t) = f 52(8) pa(t)de (60¢)
if
HOPID = L) = f) PO/ P3E) (61)
then equation (58) reduces to the Kp equation
Ver = Vpggr + 6(VE 4 Vi) + 3V, (62)

So, the general KP equations with variable coefficients appearing in [22-29] are essentially
the Kp equation.
We now discuss the KP-type equation

U = f3(t)hxex + 6 2P ux + folthu + fi()xu, +s(@hux + f4(t)Dx_luyy p >0

(63)
Let
u(x,y,1) =gV, 0, 1) § = xh(t) + () n=y T = m(t) (64)
where
s =coon( [ A0&)  rO=ace( [ no)
t ¢ (65)
I(7) = f s(Oh() dt m{z) = f FOR () de.
It
HORS) = R1PE) fa(t) = f@0)R4E) (66)
then equation {63) is reduced to the general XF equation
So, equation (63} admits the solitary wave solution
r
e,y =aerp( [ )
2
X {A sech®? [kh(t)x +kIG) + by — (c + -I-Jk—) m(t):l + BSPI} (68)

where k, & and B are arbitrary constants, A and ¢ are given by (10), k(2), {(t) and n2(z) are
given by (65), if equation (66) holds. ‘

5. High-order variable coefficients Kdv equation

We discuss the high-order variable coefficients Kdv equation

N gty
ue + 1 fL(uu, + Ecﬂ‘“ fat1 (r)w =0 ¢; =constant.  (69)

=1

Let
ulx, ) = ptx + OV, T) I =h(x T=71() (70)
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where p(z) = 1/(ao + c1 f 1(1)d1), g(&) = h(t) = cop(®), T(®) = f! Fawer (VRN 10 d2
with ag, ¢y, ¢1 arbitrary constants. If |

H() = fs()al) Frur1Q) = fuas @B @) k=123,....N=-1) (71)
then equation (69} is reduced to the high-order Kdv equation '

N g+l
VedoaVV + E CZI.HW = (72)
' =1

Let us consider the travelling wave solution for equation (72), V(§,7) = W(n),
n = k& — cot, where k and.cv are constants to be determined. Then equation (72} reads

N - i
—&)W(D + ClkWW(l) + Z ng+1k2!+1 WD — 0 W(‘” = d W . (73)
I=1 7 dp/
Integrating equation (73), we gt
N
~oW + 5ok W2+ cp kW = K (74)

I=1
where K is an integration constant. Further, we assume that the travelling wave solutions
to equation (72) are of the particular form

W{n) = Agsech®” 5 + By. _ (73)
Notice that . )
(sech® M@ = —2N (2N + 1) sech®*2 5 + (2N)? sech® g
£ by sech®™F2 4+ (2N)? sech® 5 (76.0)

(sech® 7)™ = 2N (2N + 12N -+ 2)(2N + 3) sech® 4y
—IN(N 4+ DICN 4+ 207 + 2NYTsech? 2 5 + 2N sect® 5
2 pyysech®™ 4y 4 by sech®™ 2 5+ (ON)* sech®™ 5 (76.1)

(sech®™ m)® £ by 4 sech® 6 1 4 by 5 sech®+ 1 + bg 1 sech® 2 5 + (2N)® sech® 4 (76.2)

(sech®™ m@¥=D 2 pyy o w_1sech™ 2 + bay_a n_asech™ ... -
+byy 9,1 sech?¥2 4 (2NN 2 gech?N 5 (76.N — 1)

(sech™ )@ &2 (—D¥2NEN + DN +2) N =1 sech* 5
+bow n_i sech™ =2 + boy oz sech®™ " .

oy sech®¥ 2 g £ (2N) sech® 1. (76.N)
Substituting equations (75) and (76) into equation (74), we get the following equations:
sech™ 5 : @ = ¢c1kBy + (2N )2esk® + 2N csk® + - -« + QN coy K2V H (77.0)

sech™*2 p : by 1e5 + by, 15k + bg,167k* + - - - + bay 1621 KN T = 0 (77.1)
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sech2V+4 7y acs + bﬁ,zc'yk?' + - ng_2C'2N+1k2N_4 =0. . (77.2)
sech*™ 2 5 1 oy a2 Ne1Caw—1 K2 + bay vo1Can s KN =0 (71N =1)
)N+
sech* 71 Ag = £T)—,—(4N)(2N + DN +2) ... (4N — Degy1k*. (77.N)
1

From equation (77.N — 1), assuming cay_1can+1 < 0 and noticing that bay_s y_1 6oy N1 >
0, we get

_ Dyy_a N—1CaN-1

K= > 0. (78)

ban N-1C2N+1
From equations (77.N ~ 2)-(77.1), we obtain

-1 Cov-1
Cow—3 = dan-3 CaN—s = aN—s—5— *
CON4I CZN+1
{can—1)" 2 (cav_1)"!
€5 = ds——7— G=d—5= (79)
(con+1)¥-3 (cans )N

where d; are dependent on N.
So, if cay—1can+1 <0, €3, Cs, . . ., Can41 Satisfy equation (79), then equation (72) admits
the solitary wave solution

V(& 1) = Agsech® (k& — wt) + By (80)

where By is an arbitrary constant and Ap, @ and k are given by equations (77.¥), (77.0)
and (78). We thus get the solution for equation (65)
X Co

£ + 14
ao+c1 fy filydt  ap e fy il de

cpX
x { Ag sech™ [k(
{ ap+ ¢y fy @) de

! 2N+1
_ Co szﬂ @) )] } 1
¢ fo el fi) dr} |+ Bog. (81}

ux,t) =

6. Discussion

In the previcus sections, a class of explicit transformations between varipus variable
coefficient equations of Kdv, mKdv and KP type to their (integrable) constant coefficient
counterparts are tevealed. Therefore, integrability and symmetry results, for instance,
PP, BT, Lax pairs, solitary wave soiutions, ICL, symmetry, Lie algebra etc for variable
coefficients Kdv, mKdv and KP-type equations are simple, transparent and straightforward.
S0, it is very important and interesting to find new and real Kdv-type equations with variable
coefficients, and to investigate integrability and symmetries for those equations. Of course,
a few equations with variable coefficients which cannot be reduced to the standard forms
have been introduced: see, for instance, the KP equation with explicit x and ¢ dependence
introduced by Steeb and Spieker (see equation (17a) in [30]), the general KP equation with
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explicit x, y and ¢ dependence and the general x, 7-dependent Kdv—Burgers-type equation
studied by Zhu zuo-nong (see equations (26) and (32) in [31]), the equation

_y [ m@], 1, e
4y = VO T Oitans + 69 (Ow(OT (Fhaity [T(t)-'-w(r)}u [m)* U(t)]xux

(82)

discussed by Fuchssteiner (see equation (3.74} in [1]), and the model based on the forced
Xdv equation

My — Buily + e = Asin[g(x — v1)]. 83)

This equation has recently been analysed by Malomed [32] and Grimshaw et al [33].
Winternitz and Gazeau [34, 357 studied the symmetry for

v+ f(x, thuu, + glx, Doyye = 0. (84)

It appears to the author that no simple transformation exists which transforms cquatlons (82)
or (84) into a constant coefficient equation. However, if T'(¢) satisfies

clnley — M+ T =—t+c (83)

¥ — u -+ x/6vwT,T, then equation (82) is reduced to the Kav. If f = g, = 0,
T gty = FOla fot F(s) ds + ¢3], then equation (84) is also reduced to the Kav.
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